Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
FeynHex is a free and open-source educational tool for building Feynman diagrams. We built this tool to provide an accurate representation of Feynman diagrams that can be physically explored by students. This a repository of the 3D models, documentation, and curriculum.more » « lessFree, publicly-accessible full text available June 18, 2026
-
Assi, Benoit; Bierlich, Christian; Ilten, Phil; Menzo, Tony; Szewc, Manuel; Wilkinson, Michael; Youssef, Ahmed; Zupan, Jure (Ed.)We present a method for reweighting flavor selection in the Lund string fragmentation model. This is the process of calculating and applying event weights enabling fast and exact variation of hadronization parameters on pre-generated event samples. The procedure is post hoc, requiring only a small amount of additional information stored per event, and allowing for efficient estimation of hadronization uncertainties without repeated simulation. Weight expressions are derived from the hadronization algorithm itself, and validated against direct simulation for a wide range of observables and parameter shifts. The hadronization algorithm can be viewed as a hierarchical Markov process with stochastic rejections, a structure common to many complex simulations outside of high-energy physics. This perspective makes the method modular, extensible, and potentially transferable to other domains. We demonstrate the approach in Pythia, including both numerical stability and timing benefits.more » « lessFree, publicly-accessible full text available April 30, 2026
-
We introduce a novel method for extracting a fragmentation model directly from experimental data without requiring an explicit parametric form, called Histories and Observables for Monte-Carlo Event Reweighting (HOMER), consisting of three steps: the training of a classifier between simulation and data, the inference of single fragmentation weights, and the calculation of the weight for the full hadronization chain. We illustrate the use of HOMER on a simplified hadronization problem, aq\bar{q} string fragmenting into pions, and extract a modified Lund string fragmentation functionf(z) . We then demonstrate the use of HOMER on three types of experimental data: (i) binned distributions of high-level observables, (ii) unbinned event-by-event distributions of these observables, and (iii) full particle cloud information. After demonstrating thatf(z) can be extracted from data (the inverse of hadronization), we also show that, at least in this limited setup, the fidelity of the extractedf(z) suffers only limited loss when moving from (i) to (ii) to (iii). Public code is available at https://gitlab.com/uchep/mlhad.more » « lessFree, publicly-accessible full text available February 17, 2026
-
We introduce a model of hadronization based on invertible neural networks that faithfully reproduces a simplified version of the Lund string model for meson hadronization. Additionally, we introduce a new training method for normalizing flows, termed MAGIC, that improves the agreement between simulated and experimental distributions of high-level (macroscopic) observables by adjusting single-emission (microscopic) dynamics. Our results constitute an important step toward realizing a machine-learning based model of hadronization that utilizes experimental data during training. Finally, we demonstrate how a Bayesian extension to this normalizing-flow architecture can be used to provide analysis of statistical and modeling uncertainties on the generated observable distributions.more » « less
-
This work reports on a method for uncertainty estimation in simulated collider-event predictions. The method is based on a Monte Carlo-veto algorithm, and extends previous work on uncertainty estimates in parton showers by including uncertainty estimates for the Lund string-fragmentation model. This method is advantageous from the perspective of simulation costs: a single ensemble of generated events can be reinterpreted as though it was obtained using a different set of input parameters, where each event now is accompanied with a corresponding weight. This allows for a robust exploration of the uncertainties arising from the choice of input model parameters, without the need to rerun full simulation pipelines for each input parameter choice. Such explorations are important when determining the sensitivities of precision physics measurements. Accompanying code is available at https://gitlab.com/uchep/mlhad-weights-validation.more » « less
-
Abstract We discuss a model for directed percolation in which the flux of material along each bond is a dynamical variable. The model includes a physically significant limiting case where the total flux of material is conserved. We show that the distribution of fluxes is asymptotic to a power law at small fluxes. We give an implicit equation for the exponent, in terms of probabilities characterising site occupations. In one dimension the site occupations are exactly independent, and the model is exactly solvable. In two dimensions, the independent-occupation assumption gives a good approximation. We explore the relationship between this model and traditional models for directed percolation.more » « less
-
Abstract The CODEX-βapparatus is a demonstrator for the proposed future CODEX-b experiment, a long-lived-particle detector foreseen for operation at IP8 during HL-LHC data-taking. The demonstrator project, intended to collect data in 2025, is described, with a particular focus on the design, construction, and installation of the new apparatus.more » « lessFree, publicly-accessible full text available July 1, 2026
-
SALT, a new dedicated readout Application Specific Integrated Circuit (ASIC) for the Upstream Tracker, a new silicon detector in the Large Hadron Collider beauty (LHCb) experiment, has been designed and developed. It is a 128-channel chip using an innovative architecture comprising a low-power analogue front-end with fast pulse shaping and a 40 MSps 6-bit Analog-to-Digital Converter (ADC) in each channel, followed by a Digital Signal Processing (DSP) block performing pedestal and Mean Common Mode (MCM) subtraction and zero suppression. The prototypes of SALT were fabricated and tested, confirming the full chip functionality and fulfilling the specifications. A signal-to-noise ratio of about 20 is achieved for a silicon sensor with a 12 pF input capacitance. In this paper, the SALT architecture and measurements of the chip performance are presented.more » « less
-
Measurements are presented of the cross-section for the central exclusive production ofJ/\psi\to\mu^+\mu^- and\psi(2S)\to\mu^+\mu^- processes in proton-proton collisions at\sqrt{s} = 13 \ \mathrm{TeV} with 2016–2018 data. They are performed by requiring both muons to be in the LHCb acceptance (with pseudorapidity2<\eta_{\mu^±} < 4.5 ) and mesons in the rapidity range2.0 < y < 4.5 . The integrated cross-section results are\sigma_{J/\psi\to\mu^+\mu^-}(2.0 where the uncertainties are statistical, systematic and due to the luminosity determination. In addition, a measurement of the ratio of\psi(2S) andJ/\psi cross-sections, at an average photon-proton centre-of-mass energy of1\ \mathrm{TeV} , is performed, giving$ = 0.1763 ± 0.0029 ± 0.0008 ± 0.0039,$$ where the first uncertainty is statistical, the second systematic and the third due to the knowledge of the involved branching fractions. For the first time, the dependence of theJ/\psi$ and\psi(2S) cross-sections on the total transverse momentum transfer is determined inpp collisions and is found consistent with the behaviour observed in electron-proton collisions.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
